Physical Random Number Generators

Eric Hofesmann
College of Charleston Department of Physics and Astronomy
(Dated: May 2, 2016)

Methods for creating true random numbers include the emission of radioactive particles, audio
noise, and photocell noise. The most basic random number generator creates only ones and zeros.
Radiation was collected with a Geiger counter and an even or odd value represented a zero or one.
The audio and photocell noise were both attached to an amplifier and the voltage was read off of the
oscilloscope data. The voltage being even or odd represented a zero or a one. The randomness of
the numbers was tested by the percentage of time that a specific bit string appears in each sample.
The data was also unbiased through the Von Neumann approach. The biased data showed that the
photocell and 50 ms speaker noise are more random than the radiation and 5 ms speaker data. The
unbiased data showed an improvement in all samples except radiation and the control.

I. INTRODUCTION

Random number generators are important for various
computer applications like simulation and encryption [1].
Simulation must be based off of random number genera-
tors so that the results are representative of the physical
system that is being simulated. The generator must be
random because if is biased, then the simulation will also
be biased. Other simulations like the lottery are cru-
cial that they are random so that the numbers cannot
be guessed. Random numbers are also used at the heart
of encryption. When information is encrypted, random
numbers are used to create keys to the information, and
if the numbers are not truly random then hackers be able
to replicate the key and obtain access to personal infor-
mation [2].

Even though random number generators are widely
used in software, computers have a difficult time actually
creating random numbers. Computers are designed to be
deterministic machines which implies that there is no as-
pect of randomness to them that can be exploited. There
are two types of random number generators, PRNGS
which are built around mathematical methods that take
a non random number and turn it into a number that
is mostly random [3]. TRNGS are true random num-
ber generators which are based off of random physical
properties which are converted into numbers. One of the
leading random number generators Random.org uses at-
mospheric noise to create random numbers. The numbers
generated in this experiment are binary ones and zeros,
but they can be converted into any length integer given
enough bits.

A. Voltage Amplifier

Noise that is used for random number generators is of-
ten emitted at a low voltage. This is generally too low
for most oscilloscopes to measure, thus it is necessary to
amplify this voltage. The amplifier used during this ex-
periment uses an op amp and two resistors [4]. Figure
1 shows a circuit diagram of the amplifier. There is a

FIG. 1. A voltage amplifier can be built out of an op amp and
two resistors. One resistor connects the output of the op amp
to the inverting input of the op amp and is connected to a
second resistor which is connected to ground. The resistance
of the first resistor divided by the resistance of the second
gives the gain of the amplifier. The input to the amplifier is
a signal sent into the non-inverting input of the op amp and
the amplified signal is taken from the output of the op amp.

voltage divider between the output of the op amp, the
inverting input, and ground. Thus the ratio of the re-
sistors represents the gain of the amplifier. In this case
there is a gain of 1000.

II. RADIATION

Radiation is often one of the first examples of a true
random number generator because it is inherently ran-
dom due to the underlying quantum principles governing
it [5]. The timing of the emission of a radioactive particle
is non deterministic which will be the source of entropy
for this random number generator.

A sample of strontium 90 was used as the radioactive
source in this experiment. Strontium 90 undergoes 5~
decay which releases an electron from it’s nucleus and
produces yttrium 90. A Geiger counter was used to count
the number of particles it emitted every six seconds. The
number of particles that were detected was between 70 to
100 every six seconds. These numbers are high enough to
provide a random distribution of even and odd numbers.
The probability of it being even should be the same as it

FIG. 2. A speaker generates a voltage which leads into the
non-inverting input of an op amp. The op amp was used as
a voltage amplifier with a gain of 1000.

being odd so a zero or one was recorded respectively. This
method takes a long time, however so only 250 numbers
were recorded.

III. AUDIO NOISE

Noise is a common method of producing random num-
bers. Generally, thermal noise is used for random num-
ber generators in computer systems [2] but audio noise
is more straightforward to produce in a lab. A speaker
was used to function as a microphone as it takes in sound
and emits an electrical signal. A low quality speaker is
desired since it would generate a noisy signal. The signal
had a low amplitude on the oscilloscope so it had to be
amplified using the circuit seen in Figure 2.

The digital oscilloscope used was able to take an image
of the waveform and save the voltages in a spreadsheet.
Each image of the voltage waveform was broken down
into 4000 integer values. Similarly to the radiation, a
zero is for an even value of the voltage and a one is for
an odd value of the voltage. There were fifteen images
taken totaling 60,000 random bits of one and zero.

Two timescales were tested, 50 ms and 5 ms. Initially
5 ms data was recorded since at this frequency, the image
was refreshed quicker than at 50 ms and thus should re-
sult in a more random waveform. However, the 5 ms data
had a smoother waveform than the 50 ms data which im-
plies less variation between the integer values and thus
less randomness. Both samples of 60,000 bits were taken
to compare the results.

IV. PHOTOCELL NOISE

Light can also be used to generate noise through the
variations in photon levels on a detector. The type of de-
tector that varies it voltage with changing levels in light
is called a photocell. Since the number of photons hitting
the detector is never the same, there will be a random as-
pect in the signal. Figure 3 shows the circuit used in the
photocell experiment. This circuit is was similar to the
speaker except that instead of the microphone generating

10Q 100kQ

FIG. 3. This is the circuit through which the photocell noise
was generated. The photocell creates a voltage which leads
into the op amp. The op amp was used as a voltage amplifier
with a gain of 1000.

a signal, a photocell would detect the incoming light and
fluctuate the voltage. This signal amplitude was 100 mV
and thus had an approximate 10 times lower amplitude
than the speakers signal.

The random number data was obtained through the
same method as the speaker noise. The digital oscillo-
scope was set to a 50 ms timescale and then the data
was extracted directly from the waveforms seen on the
screen. The even and odd voltages represented zeros and
ones in the data set. This was repeated for fifteen wave-
forms and they were compiled into a set of 60,000 random
bits.

V. RANDOMNESS TESTING

In order to determine the quality of the random num-
ber generators, the randomness of the numbers must be
quantitatively tested in a way that can be compared be-
tween the various methods. A control group was used for
these tests. This control group was a set of 60,000 ones
and zeros generated by Random.org [3].

NIST has a test suite designed to determine the ran-
domness of a random number generator [6]. There are
12 tests in this suite each increasing in complexity. The
methods implemented in this experiment were two of the
simpler ones since the random number generators must
first pass the simple tests before being tested with the
complex ones. The two methods that were used consisted
of finding the frequency of having a one and a zero and
determining the number of times that a sequence of bits
repeats. This was generalized in the program that was
written, see Appendix B, to compare all possible com-
binations of bit strings for a certain number of bits. If
one bit is used, then this will determine the frequency
of finding a one or a zero but it can be extended to any
number of bits. The program would generate every pos-
sible combination of ones and zeros for a certain number
of bits and then count the number of times that combina-
tion appeared in the samples data. This number of times
that each combination appeared was divided by the to-

FIG. 4. a. Radiation, b. Random.org, c. Photocell, d. Speaker 5 ms, e. Speaker 50 ms

tal number of combinations to determine the probability
that each bit string appeared. The Central Limit Theo-
rem suggests that as the number of ones and zeros goes to
infinity, the ideal probability of finding each combination
should be equal [7].

While it is difficult to create a truly random source,
mathematical methods exists to unbias a sample [8]. One
such methods is called the Von Neumann strategy and it
includes examining the transitions from one to zero and
zero to one [5]. Even if the probability of obtaining a one
is different than the probability of obtaining a zero, then
the probability of a one following a zero and of a zero
following a one should still be the same. Thus, the sam-
ples were unbiased by creating a new set which contains
a zero anytime that a one followed a zero in the original
data and it contains a one anytime a zero followed a one.

VI. RESULTS

The randomness testing program was applied to each
set of data; the Random.org control, photocell data,
50 ms speaker data, 5 ms speaker data, and the radi-
ation data.

Tables I and II show the statistical results of each sam-
ple. Table I shows the statistics for the percentage of the
time that each possible combination of one bit, only zero
or one, appeared in the samples. Table II shows the
statistics for each five bit combination appearing in the
samples. The Tables include the string that appeared the
maximum percentage of the time and the minimum per-
centage of the time. They also include the standard de-
viation of the data points in each sample compared with
the ideal percentage and the standard deviation of the
mean. The ideal percentage for one bit is 50% for each
combination and for five bits is 3.125% for each combi-
nation. The statistical tests were repeated up to 10 bits
and the results continued the trends shown in Table II
including Random.org having the lowest standard devia-
tion and the speaker at 5 ms having the highest standard
deviation.

The samples where then unbiased and the statistical
tests were performed again. These results are shown in
Tables III for the one bit test and IV for the five bit test.
These show that there is a general improvement in the
results apart from the control sample and the radiation

Sample Max (%) Min (%) s (%) sm (%)
Random.org 0: 50.40 1: 49.60 0.57 0.30
Speaker 50 ms 0: 52.10 1: 47.90 2.97 2.10
Photocell 0: 52.15 1: 47.85 3.04 2.15
Radiation 0: 52.94 1: 47.05 4.16 2.94
Speaker 5 ms 0: 52.49 1: 47.51 3.52 2.49

TABLE 1. This table shows the statistical results of one bit
for the biased data set. The ideal probability is 50% for each
combination.

Sample Max (%) Min (%) s (%) sm (%)
Random.org 00010: 3.33 01111: 2.96 0.09 0.02
Speaker 50 ms 00000: 3.75 11011: 2.57 0.31 0.05
Photocell 00000: 3.98 11111: 2.64 0.32 0.06
Radiation 01010: 5.98 01111: 0.85 1.35 0.24
Speaker 5 ms 00000: 13.28 10101: 1.10 2.55 0.45

TABLE II. This table shows the statistical results of five bits
for the biased data set. The ideal probability is 3.125% for
each combination.

sample. Unbiasing the radiation sample further limited
the size of the sample and thus skewed the results.

Figure 4 shows images created by going line by line
through a blank image and coloring the pixel black if the
data is a one and white if the pixel is a zero. The radia-
tion data had the lowest number of data points and this
is why the resolution is much lower than the other im-
ages. The photocell, Random.org, and speaker at 50 ms
images appear similar by eye. However, the speaker at
5 ms image has horizontal lines that can be seen repeat-
ing throughout the image. This is an indication that
there are repeating bits which cause repetitive patterns
to appear.

A. Error Analysis

The similarity between the 50 ms speaker data and the
photocell data may be a byproduct of the method used
to generate the numbers. It is possible that any noisy
50 ms data taken from the digital oscilloscope will result
in similar output. This would be due to the way that the
oscilloscope determines the value of the voltage at each
point and how it determines if it is even or odd. However,

Sample Max (%) Min (%) s (%) sm (%)
Random.org 0: 50.31 1: 49.68 0.45 0.32
Speaker 50 ms 0: 50.33 1: 49.67 0.47 0.33
Photocell 1: 50.03 0: 49.97 0.04 0.03
Radiation 1: 52.94 0: 47.06 4.16 2.94
Speaker 5 ms 0: 50.80 1: 49.20 1.13 0.80

TABLE III. This table shows the statistical results of one bit
for the unbiased data set. The ideal probability is 50% for
each combination.

Sample Max (%) Min (%) s (%) sm (%)
Random.org 00110: 3.31 10110: 2.90 0.10 0.02
Speaker 50 ms 10010: 3.49 11101: 2.81 0.18 0.03
Photocell 01010: 3.48 11000: 2.73 0.18 0.03
Radiation 11001: 9.37 01010: 0.00 2.21 0.39
Speaker 5 ms 10100: 3.60 11111: 2.51 0.28 0.05

TABLE IV. This table shows the statistical results of five bits
for the unbiased data set. The ideal probability is 3.125% for
each combination.

the wave functions would have to be similarly noisy since
the digital oscilloscope was also used to generate the 5 ms
speaker data which was statistically different from the
50 ms data.

The radiation data was hypothesized to be one of the
most accurate random number sources but the statistical
tests showed it to be the second worst in terms of the
samples that were tested. In order to compare it with the
other samples, a random 240 bits were taken from each
sample to compare. The program was used to determine
the statistical properties of each sample. The results are
shown in Table V for a one bit test and Table VI for
a five bit test. The tests seem to break down for small
samples since Table V shows the photocell and 50 ms

speaker having a 0 standard deviation even though it is
shown that they do not in Table I.

VII. CONCLUSION

Random number generators can be made from purely
physical properties, however, in order to maximize
entropy, the random number generator should be able to
produce large amounts of data in a short amount of time.

Sample Max (%) Min (%) s (%) sm (%)
Random.org 0: 52.92 1: 47.08 4.12 2.92
Speaker 50 ms 0 1: 50.0 0 1: 50.0 0.0 0.0
Photocell 0 1: 50.0 0 1: 50.0 0.0 0.0
Radiation 0: 52.94 1: 47.05 4.16 2.94
Speaker 5 ms 1: 52.50 0: 47.50 3.54 2.50

TABLE V. This table shows the statistical results of one bit
for the biased data set where each sample is limited to a size of
240 bits. The ideal probability is 50% for each combination.

Sample Max (%) Min (%) s (%) sm (%)
Random.org 01010: 7.20 00000: 0.42 1.57 0.28
Speaker 50 ms 00111: 5.51 10111: 1.27 0.80 0.14
Photocell 00100: 4.66 01011: 1.69 0.85 0.15
Radiation 01010: 5.98 01111: 0.85 1.35 0.24
Speaker 5 ms 11111: 13.56 11001: 0.42 2.53 0.45

TABLE VI. This table shows the statistical results of five
bits for the biased data set where each sample is limited to
a size of 240 bits. The ideal probability is 3.125% for each
combination.

[1] Erica Klarreich, Take a Chance, Scientists put ran-
domness to work, 2004, https://www.sciencenews.org/
node/21114

Tan Goldberg and David Wagner, How secure is the World

Wide Web?, Berkeley, 1996, http://www.cs.berkeley.

edu/~daw/papers/ddj-netscape.html

[3] Mads Haahr, Introduction to Randomness and Random
Numbers, https://www.random.org/randomness/

[4] Lewis A. Riley, 2004, Operational Amplifier Circuits,
http://webpages.ursinus.edu/lriley/ref/circuits/
node5.html

[5] Paul Crowley, Generating random binary data from
Geiger counters, http://www.ciphergoth.org/crypto/
unbiasing/

[6] A. Rukhin,J. Soto,J. Nechvatal,M. Smid,E. Barker,S.
Leigh,M. Levenson,M. Vangel,D. Banks,A. Heckert,J.
Dray,S. Vo , A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic
Applications 2010, http://csrc.nist.gov/groups/ST/

[2

toolkit/rng/documents/SP800-22revia.pdf

[7] John Walker, Introduction to Probability and Statis-
tics, http://www.fourmilab.ch/rpkp/experiments/
statistics.html

Michael Mitzenmacher, Tossing a Biased Coin, Digital
Equipment Corporation, Systems Research Center, Palo
Alto, CA, http://www.eecs.harvard.edu/~michaelm/
coinflipext.pdf

[8

VIII. APPENDIX

A. Statistical Methods

The Von Neumann approach states that for an event
of probability p and an event of a different probability g,
pq = qp. Thus if a even if a 1 and 0 appear at different
frequencies, 01 should appear as often as 10.

The standard deviation was calculated using this equa-
tion.

> (xi — x)?

TV TN

(1)

The standard deviation of the mean was calculated
using this equation.

Sy = —= (2)

B. Computational Methods

The following code is the program used to calculate
the statistical results.

def getBlockList (blocksize , size):
last_it =0
bitstr = 0
string = 7’
blocks =

for j in range(0,size—blocksize+1):
for k in range(j, j+blocksize):
string 4= str (random [k])
blocks.append (string)
string = 7’
return blocks
def dec_to_bin(x):
return int (bin(x)[2:])
def getBitStrings (numbits):
decimal = 2x*xnumbits
zeros = numbits
string = 7’
bitstrings = []
for i in range(0,decimal):
zeros = numbits — len(str(
— dec_-to_bin(i)))
for j in range(0,zeros):

def

string += 0’
string 4+= str(dec_to_bin(i))
bitstrings.append(string)
string = 7’
return bitstrings

getSTD (n, totalsum):
return (totalsum /(n—1))*%(0.5)

numbits = 10

total

=0

random = #list containing random bit
— string

count = 0

totalsum = 0

maxp = 0

minp = 1

maxstr = 7’

minstr = 7’

for i in range(1l,numbits+1):

blocks = getBlockList (i, total)
bitstrings = getBitStrings (i)
for j in range(0,len(bitstrings)):
for k in range(0,len(blocks)):
if (blocks[k] = bitstrings|[]
—]):
count +=1
if (maxp < count/len(blocks)):

maxp = (count/len(blocks))
maxstr = str(bitstrings[j])
elif (maxp = count/len (blocks)):

maxstr = maxstr + 7 and "+

< str(bitstrings[j])

if (minp > count/len (blocks)):
minp = (count/len (blocks)

J

)
minstr = str(bitstrings|[j])
elif (minp = count/len(blocks)):
minstr = minstr + 7 and "+

— str(bitstrings[j])
totalsum += ((1/len(bitstrings))
< — (count/len(blocks)))xx2
count = 0
std = getSTD (len (bitstrings),
— totalsum)
stdmean = std /((len(bitstrings))

— *x(0.5))
maxp = 0
minp = 1
totalsum = 0

